Java Collections Overview
& Stack Applications

+ .
Questions?

==

Assignment 4

= when looping through a list

= consider using an iterator

if you call get(i) then only call it once and store it if you need it again.

make sure that you loop through all elements

for(inti = 0,1 < list.size(); i++),YES

for(inti= 1,1 <list.size();i++),NO

for(inti = 0,1 <list.size() - 1;1++),NO

for(inti = 0,1 < list.size(); i+=2), NO

for(inti = 0,1 <=list.size() - 1;1++), OK

for(inti = 0,1 <= list.size(); i++), ArrayIndexOutOfBoundsException

+
Assignment 4

= getting input from the console
= make it as machine friendly as possible
= check each line entered for multiple entries with delimiters
= keep the order consistent with the assignment description
= make it as human friendly as possible
= display text that describes the expected format of the input

<<interface>>
Set
v 4

<<interface>>

Collection

<<interface>>

<<interface>>
List Queue
iy
<<interface>>
SortedSet
A
HashSet LinkedHashSet TreeSet ArrayList Vector LinkedList PriorityQueue
Object <<interface>>
' M
<<interface>>
SortedMap
v
Arrays Collections Hashtable LinkedHashMap HashMap TreeMap
R =
implements extends

<<interface>>
Collection

/

Set

<<interface>>

v 4

aitedface>>
SortedSet
Logarithmic

\

N

-

List

<<interface>>

A

»v

Linear access

\

<<interface>>

Queue

Ay

Constant Time Access

Constant Time
Access Access
HashSet LinkedHashSet TreeSet ArrayList Vector LinkedList PriorityQueue
Object ‘ <<int:1rface>>
a
4 7
~
g
| <iprerfyre>>
s nd-ip
v
Arrays Collections Hashtable LinkedHashMap HashMap TreeMap
- =
implements extends

<<interface>> J-

Set

<<interface>>

v 4

\

Collection

*

<<interface>>
SortedSet

A

HashSet

LinkedHashSet

TreeSet

Insertion Natural
Unordered

\

<<interface>>
Queue

iy

=k

LinkedList

PriorityQueue

FIFO Access

Natural Oxder

Access

<interface>> Access
Collection

- \ By Value
List Access

e

Insertion Order

:I ArrayList Vector LinkedList

Random Linked
Access Access

<<interface>>
Map

) L\

<<interface>>
SortedMap

v

Hashtable LinkedHashMap HashMap TreeMap

Unordered Insertion Natural
Synchronized Order Unordered Order

+ .
Questions?

+ A Stack of Strings

Jonathan Philip
Dustin Dustin Dustin
Robin Robin Robin
Debbie Debbie Debbie
Rich Rich Rich

(a) (b) (c)

= “Rich” is the oldest element on the stack and “Jonathan” is the
youngest (Figure a)

» String last = names.peek(); stores a reference to
“Jonathan” in 1ast

» String temp = names.pop(); removes “Jonathan” and
stores a reference to it in temp (Figure b)

» names.push (“Philip”); pushes “Philip” onto the stack
(Figure ¢)

+ Finding Palindromes

= Palindrome: a string that reads identically in either direction, letter by |
(ignoring case)
= kayak
= "l'saw | was I"
= “Able was | ere | saw Elba”

= "Level madam level"

= Problem: Write a program that reads a string and determines whether it is
palindrome

+ Finding Palindromes (cont.)

» Solving using a stack:

= Push each string character, from left to right, onto a
stack

" < an
"kayak" becomes David" becomes

+ Finding Palindromes (cont.)

» Solving using a stack:

= Pop each character off the stack, appending each to
the StringBuilder result

"_J. "
becomes "kayak" becomes "divaD

+ Balanced Parentheses

= When analyzing arithmetic expressions, it is important to determine wh
an expression is balanced with respect to parentheses

(a+b* (c/ (d-e))y)+ (d/ e)

= The problem is further complicated if braces or brackets are used in
conjunction with parentheses

= The solution is to use stacks!

+ Balanced Parentheses (cont.)

Algorithm for method isBalanced

~1 0N iy B Lo o e

O OO

10.

11.
12.
13.

Create an empty stack of characters.
Assume that the expression is balanced (balanced is true).
Set index to 0.
while balanced is true and index < the expression’s length
Get the next character in the data string,.
if the next character is an opening parenthesis
Push it onto the stack.
else 1if the next character is a closing parenthesis
Pop the top of the stack.

if stack was empty or its top does not match the closing
parenthesis
Set balanced to false.
Increment index.
Return true if balanced is true and the stack is empty.

+ Balanced Parentheses (cont.)

Expression: (w * [x + y] / z)

balanced : true
index : 0

+ Balanced Parentheses (cont.)

Expression: (w * [x + y] / z)

balanced : true
index : 0

+ Balanced Parentheses (cont.)

Expression: (w * [x + y] / z)

balanced : true
index 1

+ Balanced Parentheses (cont.)

Expression: (w * [x + y] / z)

balanced : true
index : 2

+ Balanced Parentheses (cont.)

Expression: (w * [x + y] / z)

balanced : true
index : 3

+ Balanced Parentheses (cont.)

Expression: (w * [x + y] / z)

balanced : true
index : 3

+ Balanced Parentheses (cont.)

Expression: (w * [x + y] / z)

0O 1 2 3 4 5 6 7 8 9 10

(w * [x + vy 1 / z)

|

balanced : true
index : 4

+ Balanced Parentheses (cont.)

Expression: (w * [x + y] / z)

balanced : true
index : 5

+ Balanced Parentheses (cont.)

Expression: (w * [x + y] / z)

0O 1 2 3 4 5 6 7 8 9 10

|

balanced : true
index : 0

+ Balanced Parentheses (cont.)

Expression: (w * [x + y] / z)

0O 1 2 3 4 5 6 7 8 9 10

|

balanced : true
index 7

+ Balanced Parentheses (cont.)

Expression: (w * [x + y] / z)

0O 1 2 3 4 5 6 7 8 9 10

| ﬁ
Matches!
Balanced still true

balanced : true
index 7

+ Balanced Parentheses (cont.)

Expression: (w * [x + y] / z)

0O 1 2 3 4 5 6 7 8 9 10

|

balanced : true
index : 8

+ Balanced Parentheses (cont.)

Expression: (w * [x + y] / z)

0O 1 2 3 4 5 6 7 8 9 10

|

balanced : true
index : 9

+ Balanced Parentheses (cont.)

Expression: (w * [x + y] / z)

0O 1 2 3 4 5 6 7 8 9 10

balanced : true
index : 10

+ Balanced Parentheses (cont.)

Expression: (w * [x + y] / z)

0O 1 2 3 4 5 6 7 8 9 10

(

Matches!
Balanced still true

balanced : true
index : 10

+ Additional Stack Applications |I
= Postfix and infix notation

= Expressions normally are written in infix form, but

= it easier to evaluate an expression in postfix form since there is
no need to group sub-expressions in parentheses or worry
about operator precedence

Postfix Expression Infix Expression

4 7 2 +, * 4 * (7 + 2) 36

4 7 * 20 - (4 *7) - 20 8

Bk T " 2 I A 308 ™ Z) 2D 17

+ Evaluating Postfix Expressions (cont.

— create an empty stack of integers
while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack
else if the token is an operator
pop the right operand off the stack

pop the left operand off the stack

© 00 Jd o U1 & W DN R

evaluate the operation

Y
o

push the result onto the stack

=
=

pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

— create an empty stack of integers
while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack
else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

© 00 Jd o U1 & W DN R

evaluate the operation

Y
o

push the result onto the stack

=
=

pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

create an empty stack of integers
while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack
else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

© 00 Jd o U1 & W DN R

evaluate the operation

Y
o

push the result onto the stack

=
=

pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

1. create an empty stack of integers

> 2. while there are more tokens

= 3. get the next token
4. if the first character of the token is a digit
push the token on the stack

else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

© 00 Jd o0 U

evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

1. create an empty stack of integers

> 2. while there are more tokens

= 3. get the next token
[:j>4- if the first character of the token is a digit
5. push the token on the stack
6 else if the token is an operator
7 pop the right operand off the stack
8. pop the left operand off the stack
9 evaluate the operation

10. push the result onto the stack
11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

1. create an empty stack of integers

> 2. while there are more tokens

= 3. get the next token
[:j>4- if the first character of the token is a digit
) 5. push the token on the stack
6. else if the token is an operator
7. pop the right operand off the stack
8. pop the left operand off the stack
9. evaluate the operation
10. push the result onto the stack

11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

create an empty stack of integers
while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack
else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

© 00 Jd o U1 & W DN R

evaluate the operation

Y
o

push the result onto the stack

=
=

pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

1. create an empty stack of integers
2. while there are more tokens
= 3. get the next token
4. if the first character of the token is a digit
push the token on the stack
else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

© 00 Jd o0 U

evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

1. create an empty stack of integers

2. while there are more tokens

3. get the next token
[:j>4 if the first character of the token is a digit

5 push the token on the stack

6. else if the token is an operator

7 pop the right operand off the stack

8 pop the left operand off the stack

9 evaluate the operation
10. push the result onto the stack

11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

1. create an empty stack of integers
2. while there are more tokens
3 get the next token
[:j>4 if the first character of the token is a digit
> 5 push the token on the stack
6 else if the token is an operator
7 pop the right operand off the stack
8 pop the left operand off the stack
9 evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

1. create an empty stack of integers
2. while there are more tokens
3 get the next token
[:j>4 if the first character of the token is a digit
> 5 push the token on the stack
6 else if the token is an operator
7 pop the right operand off the stack
8 pop the left operand off the stack
9 evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

create an empty stack of integers
while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack
else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

© 00 Jd o U1 & W DN R

evaluate the operation

Y
o

push the result onto the stack

=
=

pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

1. create an empty stack of integers
2. while there are more tokens
= 3. get the next token
4. if the first character of the token is a digit
push the token on the stack
else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

© 00 Jd o0 U

evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

1. create an empty stack of integers

2. while there are more tokens

3. get the next token
[:j>4 if the first character of the token is a digit

5 push the token on the stack

6. else if the token is an operator

7 pop the right operand off the stack

8 pop the left operand off the stack

9 evaluate the operation
10. push the result onto the stack

11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

1. create an empty stack of integers

2. while there are more tokens

3. get the next token

[:j>4- if the first character of the token is a digit
push the token on the stack

[:j>6' else if the token is an operator

7. pop the right operand off the stack

8. pop the left operand off the stack

9. evaluate the operation

10. push the result onto the stack

11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

B

1. create an empty stack of integers

2. while there are more tokens

3. get the next token

[:j>4- if the first character of the token is a digit
push the token on the stack

[:j>6' else if the token is an operator
[:j>7- pop the right operand off the stack

8. pop the left operand off the stack

9. evaluate the operation

10. push the result onto the stack

11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

.

1. create an empty stack of integers

2. while there are more tokens

3. get the next token

[:j>4- if the first character of the token is a digit
push the token on the stack

[:j>6' else if the token is an operator
pop the right operand off the stack

[:j>8- pop the left operand off the stack

9. evaluate the operation
10. push the result onto the stack

11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

]

1. create an empty stack of integers

2. while there are more tokens

3. get the next token
[:j>4- if the first character of the token is a digit
5. push the token on the stack
[:j>6' else if the token is an operator
7. pop the right operand off the stack
8. pop the left operand off the stack
[:j>9' evaluate the operation
10. push the result onto the stack

11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

. A

create an empty stack of integers
while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack
else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

evaluate the operation

H@
O W 00 J o O d W DN R

push the result onto the stack

=
=

pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

create an empty stack of integers
while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack
else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

© 00 Jd o U1 & W DN R

evaluate the operation
C10. push the result onto the stack
11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

create an empty stack of integers
while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack
else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

© 00 Jd o U1 & W DN R

evaluate the operation

Y
o

push the result onto the stack

=
=

pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

1. create an empty stack of integers
2. while there are more tokens
= 3. get the next token
4. if the first character of the token is a digit
push the token on the stack
else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

© 00 Jd o0 U

evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

1. create an empty stack of integers

2. while there are more tokens

3. get the next token
[:j>4 if the first character of the token is a digit

5 push the token on the stack

6. else if the token is an operator

7 pop the right operand off the stack

8 pop the left operand off the stack

9 evaluate the operation
10. push the result onto the stack

11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

1. create an empty stack of integers
2. while there are more tokens
3 get the next token
[:j>4 if the first character of the token is a digit
> 5 push the token on the stack
6 else if the token is an operator
7 pop the right operand off the stack
8 pop the left operand off the stack
9 evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

1. create an empty stack of integers
2. while there are more tokens
3 get the next token
[:j>4 if the first character of the token is a digit
> 5 push the token on the stack
6 else if the token is an operator
7 pop the right operand off the stack
8 pop the left operand off the stack
9 evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

i

create an empty stack of integers
while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack
else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

© 00 Jd o U1 & W DN R

evaluate the operation

Y
o

push the result onto the stack

=
=

pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

|

1. create an empty stack of integers
2. while there are more tokens
= 3. get the next token
4. if the first character of the token is a digit
push the token on the stack
else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

© 00 Jd o0 U

evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

|

1. create an empty stack of integers

2. while there are more tokens

3. get the next token
[:j>4 if the first character of the token is a digit

5 push the token on the stack

6. else if the token is an operator

7 pop the right operand off the stack

8 pop the left operand off the stack

9 evaluate the operation
10. push the result onto the stack

11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

|

1. create an empty stack of integers

2. while there are more tokens

3. get the next token

[:j>4- if the first character of the token is a digit
push the token on the stack

[:j>6' else if the token is an operator

7. pop the right operand off the stack

8. pop the left operand off the stack

9. evaluate the operation

10. push the result onto the stack

11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

. EEEE

1. create an empty stack of integers

2. while there are more tokens

3. get the next token

[:j>4- if the first character of the token is a digit
push the token on the stack

[:j>6' else if the token is an operator
[:j>7- pop the right operand off the stack

8. pop the left operand off the stack

9. evaluate the operation

10. push the result onto the stack

11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

|

1. create an empty stack of integers

2. while there are more tokens

3. get the next token

[:j>4- if the first character of the token is a digit
push the token on the stack

[:j>6' else if the token is an operator
pop the right operand off the stack

[:j>8- pop the left operand off the stack

9. evaluate the operation
10. push the result onto the stack

11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

|

1. create an empty stack of integers

2. while there are more tokens

3. get the next token
) 4. 1f the first character of the token 1is a digit
5. push the token on the stack
[:j>6' else if the token is an operator
7. pop the right operand off the stack
8. pop the left operand off the stack
. evaluate e operation
E:$>9 luate th ti
10. push the result onto the stack

11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

| —

create an empty stack of integers
while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack
else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

evaluate the operation

H@
O W 00 J o O d W DN R

push the result onto the stack

=
=

pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

|

create an empty stack of integers
while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack
else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

© 00 Jd o U1 & W DN R

evaluate the operation
C10. push the result onto the stack
11. pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

|

create an empty stack of integers
while there are more tokens
get the next token
if the first character of the token is a digit
push the token on the stack
else if the token is an operator

pop the right operand off the stack

pop the left operand off the stack

© 00 Jd o U1 & W DN R

evaluate the operation

Y
o

push the result onto the stack

=
=

pop the stack and return the result

+ Evaluating Postfix Expressions (cont.

|

1. create an empty stack of integers

2. while there are more tokens

3. get the next token

4. if the first character of the token is a digit
5. push the token on the stack

6. else if the token is an operator

7. pop the right operand off the stack
8. pop the left operand off the stack
9. evaluate the operation
10. push the result onto the stack
11. pop the stack and return the result

l

+ .
Questions?

+ Java's Stack Implementation

[. . .
Extending a Vector (asis done by Java) is a poor
choice for stack implementation, since all Vector
methods are accessible

0 This is true for extending any Collection based class
because the Collection and all sub-interfaces have
extra access methods that are inappropriate for a Stack
implementation.

5 Instead, if you want to use an already available Java
class, then you can make an adapter class that uses
method delegation on the adapted class to implement
the Stack methods.

‘Implementing a Stack with a List
Component

» As an alternative to a stack as an extension of Vector, we can write a cl
ListStack, that has a List component (in the example below, theData)

= We can use either the ArrayList, Vector, or the LinkedList classes, as
all implement the List interface.

public class ListStack<E> {
List<E> theData;
public ListStack() {

theData = new LinkedList<E>();
}

}

= A class which adapts methods of another class by giving different names to

essentially the same methods (push instead of add) is called an adapter
class

= Writing methods in this way is called method delegation

+ Implementing a Stack as a
Linked Data Structure

= We can also implement a stack using a linked list of nodes

Character

value = 'a'

Character

[va]ue = 'y'

LinkedStack

topOfStackRef = [—1

data = [_-/‘/
next = [—

Character

(L

Character

)

value = 'a' value = ']’
Node Node Node
data = [— data = [—7 data =
next = [— next = [— next = null

+ Implementing a Stack as a
Linked Data Structure

= We can also implement a stack using a linked list of nodes

value = 'a' value = ']’

7]
l‘.
¥, il em—

value = "v'

e

\ value = 'a' (
1, i
.

\
|
|

L
R

el moce I

, I
(‘ /I \ _' // \l ' . \‘ '
| 1 ' v J
— = | data = =] / data = C=7| / | data = (3
topOfStackRef = [— next = [—=1 (next = [——H next = — i
\

It is easiest to insert and

delete from the head of a
list

+ Implementing a Stack as a
Linked Data Structure

= We can also implement a stack using a linked list of nodes

(value = ']’

value = 'a'

f
]] l
\ value = 'v \

'

/) | /)
- [// data = [— by, data = [—
' = next = null

| Node \: - Node J Node Node
‘ /\2 | /(l J \ /,|
- b - ‘ . |
J g -

topOfStackRef = [——

push inserts a node at the

head and pop deletes the
node at the head

+ Implementing a Stack as a

Linked Data Structure

= We can also implement a stack using a linked list of nodes

topOfStackRef = [——

when the list is empty, pop
returns null

data = [—
next = 77 —

data = [—
next = null

=
Implementing a Stack Using an Array

‘ ArrayStack \

=
Implementing a Stack Using an Array

Object[]

==

Implementing a Stack Using an Array

ArrayStack

Object[]

Character

==

Implementing a Stack Using an Array

ArrayStack

Object[]

Character

=
Implementing a Stack Using an Array

Character

Object[]

ArrayStack

==

Implementing a Stack Using an Array

ArrayStack

Object[]

Character

Character

==

Implementing a Stack Using an Array

ArrayStack

Object[]

Character

Character

==

Implementing a Stack Using an Array

ArrayStack

Object[]

Character

Character

==

Implementing a Stack Using an Array

ArrayStack

Object[]

Character

Character

Character

==

Implementing a Stack Using an Array

ArrayStack

Object[]

Character

Character

Character

==

Implementing a Stack Using an Array

ArrayStack

Character

Character

Character

==

Implementing a Stack Using an Array

ArrayStack

Character

Character

Character

Character

==

Implementing a Stack Using an Array

ArrayStack

Character

Character

Character

Character

==

Implementing a Stack Using an Array

ArrayStack

Character

Character

Character

Character

+ Comparison of java.util Stack
Implementations

Extendmg a Vector (asisdone by Java) is a poor
choice for stack implementation, since all Vector

methods are accessible

0 The easiest implementation adaptsa List
implementation for storing data (rather than extending
List, just use one as a field in your Stack class.)

O ArrayList is the favored by the book, but gives O(n) insertion

O An underlying array requires reallocation of space when the
array becomes full, and

O an underlying linked data structure requires allocating storage
for links

O As all insertions and deletions occur at one end, they are
(usually) constant time, O(1), regardless of the type of
implementation used

+ .
Questions?

+ .
Testing

